1,966 research outputs found

    Angle Resolved Photo-Emission Spectroscopy signature of the Resonant Excitonic State

    Full text link
    We calculate the Angle Resolved PhotoEmission Spectroscopy (ARPES) signature of the Resonant Excitonic State (RES) that was proposed as the Pseudo-Gap state of cuprate superconductors [ArXiv 1510.03038]. This new state can be described as a set of excitonic (particle-hole) patches with an internal checkerboard modulation. Here, we modelize the RES as a charge order with 2pF\bf{2p_{F}} wave vectors, where 2pF\bf{2p_{F}} is the ordering vector connecting two opposite sides of the Fermi surface. We calculate the spectral weight and the density of states in the RES and we find that our model correctly reproduces the opening of the PG in Bi-2201

    SU(2)-symmetry in a realistic spin-fermion model for cuprate superconductors

    Full text link
    We consider the Pseudo-Gap (PG) state of high-TcT_c superconductors in form of a composite order parameter fluctuating between 2pFp_F-charge ordering and superconducting (SC) pairing. In the limit of linear dispersion and at the hotspots, both order parameters are related by a SU(2) symmetry and the eight hotspot model of Efetov et al.\textit{et al.} [Nat. Phys. 9\bf{9}, 442 (2013)] is recovered. In the general case however, curvature terms of the dispersion will break this symmetry and the degeneracy between both states is lifted. Taking the full momentum dependence of the order parameter into account, we measure the strength of this SU(2) symmetry breaking over the full Brillouin zone. For realistic dispersion relations including curvature we find generically that the SU(2) symmetry breaking is small and robust to the fermiology and that the symmetric situation is restored in the large paramagnon mass and coupling limit. Comparing the level splitting for different materials we propose a scenario that could account for the competition between the PG and the SC states in the phase diagram of high-TcT_c superconductors.Comment: 6 pages, 7 figures, published versio

    What is the Shell Around R Coronae Borealis?

    Full text link
    The hydrogen-deficient, carbon-rich R Coronae Borealis (RCB) stars are known for being prolific producers of dust which causes their large iconic declines in brightness. Several RCB stars, including R CrB, itself, have large extended dust shells seen in the far-infrared. The origin of these shells is uncertain but they may give us clues to the evolution of the RCB stars. The shells could form in three possible ways. 1) they are fossil Planetary Nebula (PN) shells, which would exist if RCB stars are the result of a final, helium-shell flash, 2) they are material left over from a white-dwarf merger event which formed the RCB stars, or 3) they are material lost from the star during the RCB phase. Arecibo 21-cm observations establish an upper limit on the column density of H I in the R CrB shell implying a maximum shell mass of ≲\lesssim0.3 M⊙_{\odot}. A low-mass fossil PN shell is still a possible source of the shell although it may not contain enough dust. The mass of gas lost during a white-dwarf merger event will not condense enough dust to produce the observed shell, assuming a reasonable gas-to-dust ratio. The third scenario where the shell around R CrB has been produced during the star's RCB phase seems most likely to produce the observed mass of dust and the observed size of the shell. But this means that R CrB has been in its RCB phase for ∼\sim104^{4} yr.Comment: 5 pages, 2 figures, 2 tables, Accepted for publication in A

    Pseudogap, charge order, and pairing density wave at the hot spots in cuprate superconductors

    Full text link
    We address the timely issue of the presence of charge ordering at the hot-spots in the pseudo-gap phase of cuprate superconductors in the context of an emergent SU(2)-symmetry which relates the charge and pairing sectors. Performing the Hubbard-Stratonovich decoupling such that the free energy stays always real and physically meaningful we exhibit three solutions of the spin-fermion model at the hot spots. A careful examination of their stability and free energy shows that, at low temperature, the system tends towards a co-existence of charge density wave (CDW) and the composite order parameter made of diagonal quadrupolar density wave and pairing fluctuations of Ref. [Nat. Phys. 9\bf{9}, 1745 (2013)].The CDW is sensitive to the shape of the Fermi surface in contrast to the diagonal quadrupolar order, which is immune to it. SU(2) symmetry within the pseudo-gap phase also applies to the CDW state, which therefore admits a pairing density pave counterpart breaking time reversal symmetry.Comment: 15 pages, 15 figures, final version + typo corrected in Eq. (12

    A New Characterization of Trivially Perfect Graphs

    Full text link
    A graph GG is \emph{trivially perfect} if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number) α(G)\alpha(G) equals the number of (maximal) cliques m(G)m(G). We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs

    Charge orders, magnetism and pairings in the cuprate superconductors

    Full text link
    We review the recent developments in the field of cuprate superconductors with the special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic (AF) quantum critical point (QCP) in two dimensions, in which preemptive orders in the charge and superconducting (SC) sectors emerged, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SU(2) pairing fluctuations are dominant and argue that they are unstable towards the formation of a Resonant Peierls Excitonic (RPE) state at the pseudogap (PG) temperature T∗T^{*}. We discuss the implications of this scenario for a few key experiments.Comment: 16 pages, 17 figure

    η\eta collective mode as A1g_{1g} Raman resonance in cuprate superconductors

    Full text link
    We discuss the possible existence a spin singlet excitation with charge ±2\pm2 (η\eta-mode) originating the A1gA_{1g} Raman resonance in cuprate superconductors. This η\eta-mode relates the dd-wave superconducting singlet pairing channel to a dd-wave charge channel. We show that the η\eta boson forms a particle-particle bound state below the 2Δ2\Delta threshold of the particle-hole continuum where Δ\Delta is the maximum dd-wave gap. Within a generalized random phase approximation and Bethe-Salpether approximation study, we find that this mode has energies similar to the resonance observed by Inelastic Neutron Scattering (INS) below the superconducting (SC) coherent peak at 2Δ2\Delta in various SC cuprates compounds. We show that it is a very good candidate for the resonance observed in Raman scattering below the 2Δ2\Delta peak in the A1gA_{1g} symmetry. Since the η\eta-mode sits in the S=0S=0 channel, it may be observable via Raman, X -ray or Electron Energy Loss Spectroscopy probes

    The Identification of Extreme Asymptotic Giant Branch Stars and Red Supergiants in M33 by 24 {\mu}m Variability

    Get PDF
    We present the first detection of 24 {\mu}m variability in 24 sources in the Local Group galaxy M33. These results are based on 4 epochs of MIPS observations, which are irregularly spaced over ~750 days. We find that these sources are constrained exclusively to the Holmberg radius of the galaxy, which increases their chances of being members of M33. We have constructed spectral energy distributions (SEDs) ranging from the optical to the sub-mm to investigate the nature of these objects. We find that 23 of our objects are most likely heavily self-obscured, evolved stars; while the remaining source is the Giant HII region, NGC 604. We believe that the observed variability is the intrinsic variability of the central star reprocessed through their circumstellar dust shells. Radiative transfer modeling was carried out to determine their likely chemical composition, luminosity, and dust production rate (DPR). As a sample, our modeling has determined an average luminosity of (3.8 ±\pm 0.9) x 104^4 L⊙_\odot and a total DPR of (2.3 ±\pm 0.1) x 10−5^{-5} M⊙_\odot yr−1^{-1}. Most of the sources, given the high DPRs and short wavelength obscuration, are likely "extreme" AGB (XAGB) stars. Five of the sources are found to have luminosities above the classical AGB limit (Mbol_{\rm bol} 54,000 L⊙_\odot), which classifies them as probably red supergiants (RSGs). Almost all of the sources are classified as oxygen rich. As also seen in the LMC, a significant fraction of the dust in M33 is produced by a handful of XAGB and RSG stars.Comment: 36 pages, 14 figures, 4 tables, Accepted for publication in A
    • …
    corecore